skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Howard, Mia M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Resources, such as nitrogen, are widely hypothesized to underlie the expression and evolution of plant defenses to herbivory. However, resource availability can affect selection on plant defense traits in contrasting ways: resource availability can 1) weaken selection on defense traits by reducing the costs of herbivory, or 2) strengthen selection on defense traits by increasing herbivore pressure. Previous studies have compared herbivore resistance in populations across natural resource gradients to infer how resource availability affects the microevolution of plant defenses. However, because these studies do not manipulate resource availability, they are unable to directly test the effects of resources of plant defense trait evolution. We used a three‐decade‐long nitrogen fertilization field experiment to test how nitrogen availability affects the evolution of an architectural plant defense trait: stem nodding inSolidago altissima. Stem nodding is a genetic dimorphism that helps plants to evade apex‐galling herbivores. By comparing the frequency of defensive nodding versus erect morphs in experimentally fertilized or unfertilized plots 27, 32 and 33 years post‐treatment initiation, we assessed how nitrogen addition affects the evolution of this defense trait. We found that the defensive nodding morph was 3–6 times more common in plots that evolved under nitrogen fertilization compared to those that evolved in unfertilized control plots. This study provides empirical evidence for resource availability driving plant defense evolution and demonstrates that this evolution can occur on time‐scales conducive to study at many long‐term nutrient fertilization experiments. 
    more » « less
    Free, publicly-accessible full text available July 17, 2026